CS166 Handout 13
Spring 2018 May 17, 2018

Problem Set Five: Randomized Data Structures

This final problem set of the quarter explores randomized data structures and the mathematical tech-
niques useful in analyzing them. By the time you've finished this problem set, you'll have a much
deeper appreciation for just how clever and powerful these data structures can be!

Due Thursday, May 24 at 2:30PM.

2/5

Problem One: Count Sketches with 2-Independent Hashing (3 Points)

In our analysis of count sketches from lecture, we made the following simplification when determining the
variance of our estimate:
Var[Zajs(xi)s(xj)Xj] = ZVar[ajs(xi)s(xj)Xj]
J#I J#i

In general, the variance of a sum is not the sum of the variances, so this step required some justification.
The justification we provided in lecture was that if we let s and /4 be 3-independent hash functions, then
the terms in the sum were pairwise independent. However, to write the variance of a sum as a sum of
variances, we don’t actually need the terms of the sum to be independent of one another. They just need
to be uncorrelated.

Prove that any two terms in the above summation are uncorrelated under the assumption that both s and 4
are drawn uniformly and independently from 2-independent families of hash functions. This shows that
2-independent hashing is sufficient for count sketching, and does so in a way that doesn’t require us to
redo any of the remaining analysis.

As a refresher, two random variables X and Y are uncorrelated if E[XY] = E[X]E[Y].

3/5

Problem Two: Cardinality Estimation (12 Points)
A cardinality estimator is a data structure that supports the following two operations:
* ds.see(x), which records that the value x has been seen; and
* ds.estimate(), which returns an estimate of the number of distinct x's we've seen.

Imagine that we are given a data stream consisting of elements drawn from some universe %/ Not all ele -
ments of %/ will necessarily be present in the stream, and some elements of %/ may appear multiple times.
We'll denote the number of unique elements in the stream as Fj,.

Here’s an initial data structure for cardinality estimation. We’ll begin by choosing a hash function /4 uni-
formly at random from family of 2-independent hash functions #" from %/ to the open interval of real
numbers (0, 1). For simplicity’s sake, we’ll assume that there are no hash collisions, which isn’t too unrea-
sonable given that the codomain is infinite.

Our data structure works by hashing the elements it sees using # and doing some internal bookkeeping to
keep track of the kth-smallest unique hash code seen so far. The fact that we're tracking unique hash
codes is important; we’d like it to be the case that if we call see(x) multiple times, it has the same effect
as just calling see(x) a single time. (The fancy term for this is that the see operation is idempotent.) We'll
implement estimate() by returning k / hx, where hx denotes the kth smallest hash code seen so far.

1. Explain, intuitively, why you’d expect k / hx to be a good estimate of Fy. As a hint, think about
two different ways of counting up how many elements should have hash codes less than /.

Let € € (0, 1) be some accuracy parameter that’s provided to us.

ii. Prove that Pr[k/ hx > (1 +€)F, | < 4/ ke*. This shows that by tuning k, we can make it unlikely
that we overestimate the true value of Fy,.

Some hints and things to think about as you work through the above problem:

e At some point you should end up with an expression involving (1 + €)"'. We strongly recommend
applying the inequality (1 + €)' < 1 —/», which holds for any ¢ € (0, 1).

* Find a random variable X that’s a sum of indicator variables where
Prlk/he > (1+¢e)Fy] < Pr[X>k].
* Use Chebyshev’s inequality.
Using a proof analogous to the one you did in part (ii) of this problem, we can also prove that
Pr[k/hk< (1 —e)Fy] <2/ ke

The proof is very similar to the one you did in part (ii), so we won’t ask you to write this one up. How-
ever, these two bounds collectively imply that by tuning &, you can make it fairly likely that you get an es-
timate within *eFj of the true value! All that’s left to do now is to tune our confidence in our answer.

1ii. Using the above data structure as a starting point, design a data structure with tunable parameters
€€ (0,1)and & € (0, 1) such that

e see(x) takes time O(log &' - log &™);

e estimate(x) takes time O(log 6"), and if we let C denote the estimate returned this way, then
Prl(1-¢e)fy £ C < (1+e)Fy]=1-0;and

* the total space usage is ©(*log &).

4/5

Problem Three: Hashing in the Real World (10 Points)

You've now seen a number of different approaches for building hash tables and their mathematical analy-
sis. How well do these hash tables hold up in practice? In this problem, you'll find out.

The starter files for this programming assignment are available at

Jusr/class/cs166/assignments/ps5

Your task is to implement the following flavors of hash table:

Chained hashing: The standard hash table usually taught in CS106B/X, CS107, and CS161.
Chances are you've implemented one of these before, so hopefully this will just be a warm up.

Second-choice hashing: This is a variation on chained hashing. You'll maintain two hash functions
hy and h,. When inserting a key x, compute /;(x) and /,(x) and insert x into whichever bucket is
less loaded. To do a lookup, search for x both in the bucket given by /;(x) and hy(x).

Linear probing: The open-addressing scheme described in class.

Robin Hood hashing: A modification on linear probing described in lecture. When storing ele-
ments in the table, annotate each with its intended bucket. When doing an insertion, start off as
normal, but if you ever find that the slot you're currently scanning is occupied and the element
there is closer to its intended location, place the newly-inserted element at that location, displacing
the older element, then continue onward with the scan from the current position to place the dis-
placed element. You may end up displacing several elements in a single insertion.

Cuckoo hashing: The dynamic perfect hashing scheme described in class.

We've provided a test harness that will test your hash tables with different load factors (you don't need to
worry about resizing the tables — we'll always size them appropriately for you) and different choices of
hash functions. Once you've finished implementing your solutions, crank up the optimization level to the
maximum (-03), run our driver code, and submit a (brief) writeup answering the following questions:

The theory predicts that linear probing and cuckoo hashing degenerate rapidly beyond a certain
load factor. How accurate is that in practice?

How does second-choice hashing compare to chained hashing across the range of load factors?
Why do you think that is?

How does Robin Hood hashing compare to linear probing across the range of load factors? Why
do you think that is?

In theory, cuckoo hashing requires much stronger classes of hash functions than the other types of
hash tables we've covered. Do you see this in practice?

In theory, cuckoo hashing’s performance rapidly degrades as the load factor approaches a = %2. Do
you see that in practice?

As always, to receive full credit for this assignment, your code should compile cleanly without warnings
on the myth machines and should not have any memory leaks.

(There’s advice and hints for this problem on the next page.)

575

Some things to keep in mind:

Our driver code will provide the number of buckets to use as a parameter to the constructors of
your hash table. We've chosen these numbers specifically to test the performance of your hash ta-
ble under different load factors. As a result, you should not resize your hash tables dynamically.
Our starter files will always leave at least a few slots empty in your tables, so, for example, you
don't need to handle the case where you have a linear probing hash table that's at 100% capacity.

The file comments for each of the hash tables contain information about specific implementation
requirements. For example, we'd like you to implement deletions in Robin Hood hashing using
backwards-shift deletion and deletions in linear probing tables using tombstone deletion.

Hash functions are represented using the HashFunction type. HashFunction essentially acts like
a function pointer, so if you have a variable of type HashFunction named h, you can invoke it by
calling h(key). The hash values are distributed over the range [0, 2*'), so you will need to mod
hash codes by your table sizes.

You can assume that the keys you're hashing will be nonnegative integers. Feel free to reserve neg-
ative integers as sentinel values.

In Robin-Hood hashing, remember that you can — and should — terminate searches early in many
cases by looking at where the currently-scanned element is relative to where it should be.

You are welcome to use the C++ standard library types and functions if you'd like, though the
standard hash containers (std::unordered_map, std::unordered_set, etc.) are, understand-
ably, off-limits.

